Log-Domain Diffeomorphic Registration of Diffusion Tensor Images

نویسندگان

  • Andrew Sweet
  • Xavier Pennec
چکیده

Diffusion tensor imaging provides information about deep white matter anatomy that structural magnetic resonance images typically fail to resolve. Non-linear registration of diffusion tensor images, for which a few methods already exist, allows us to capture the deformations of these structures that would otherwise go unobserved. Here, we build on an existing method for diffeomorphic registration of diffusion tensor images, so that it fully incorporates the useful log-domain parameterization of diffeomorphisms. Initially, this allows us to easily include a registration symmetry constraint that is highly desirable for pair-wise registration. More importantly, the parameterization allows simple and proper calculation of statistics on the transformations obtained. We show that the symmetric log-domain method exhibits the most preferable trade-off between image correspondence and deformation smoothness on real data and also achieves the best recovery of synthetic warps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures

In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces conta...

متن کامل

Multi-modal diffeomorphic registration using mutual information: Application to the registration of CT and MR pulmonary images

In this paper, we present a new algorithm to register multimodal images using mutual information in a fully diffeomorphic framework. Our driving motivation is to define a one-to-one mapping in CT/MR 3D pulmonary images acquired from patients with empyema. Due to the large amount of respiratory motion and the presence of strong pathologies, preserving the invertibility of the deformations can be...

متن کامل

Joint T1 and Brain Fiber Log-Demons Registration Using Currents to Model Geometry

We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of obje...

متن کامل

Diffeomorphic image registration with applications to deformation modelling between multiple data sets

Over last years, the diffeomorphic image registration algorithms have been successfully introduced into the field of the medical image analysis. At the same time, the particular usability of these techniques, in majority derived from the solid mathematical background, has been only quantitatively explored for the limited applications such as longitudinal studies on treatment quality, or disease...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010